2D Minimum and Maximum Filters: Algorithms and
Implementation Issues

Herman Tulleken
herman.tulleken@gmail.com
http://www.code-spot.co.za

January 23, 2011

Contents
[1_The Probleml 3
2 Exact Algorithms| 3
2.1 The Naive Algorithm|. 3
2.2 The Max-Queuel 5
2.3 Implicit Queue Algorithm| 7
2.4 The Monotonic Wedge Algorithm|. 10
13 Approximate Algorithms| 12
3.1 The Power Mean Approximation| 13
8.2 The Power Mean Variant Algorithm| 13
3.3 The Contra-Harmonic Mean Approximation|. 14
4 Other Algorithm Concepts| 14
............................. 14
4.2 Implementing Minimum Filters| 19
4.3 Windows with Fiven Diametersl 20
4.4 Filtering a Region of Interest| 22
4.5 Maximum and Minimum Filters for Binary Images| 26
|A Image Containers| 28
IA.1 Image Class Interface|. 28

1A.2 Image Loops| 29

Contents

IA.3 Image Iterators] oo
IA.4 Image Access Modifiers|

B Fixed-width Deques|

|IC Max-queues|

[D Summed Area Tables|
ID.1 Calculating a SAT|
ID.2 Finding a Sum from a SAT|
ID.3 Checking for Overtlow|
ID.4 Large SATs|

1 The Problem

1 The Problem

2 Exact Algorithms

2.1 The Naive Algorithm

This document is about implementing fast, robust and maintainable mini-
mum and maximum filters.

First, we define the problem as it is approach here. Second, a description
of a variety of algorithms is given, with tips on implementing them. Third,
we look at ways in which algorithms can be modified to accomplish certain
goals. Finally, a comparison is made between the different implementations,
looking at time and space efficiency, accuracy, and ease of implementation.
Appendices at the end give some information on the various data structures
used to implement the algorithms.

I assume you already know what a maximum or minimum filter is. To make
sure we are talking about the same thing, I will briefly give the definition
used here.

The notation I(x,y) is used to denote the pixel value of an image at integer
coordinates (z,y). If the width and height of the image is given by m and
n, then z € {0,1,...m — 1} and y € {0,1,...n — 1}.

If I is an image, and we filter it with a maximum filter of radius r € Z, we
get the new image (max, I) given by
(max,.I)(z,y) = max I(u,v) (1)

r—r<u<z+r
y—r<v<y+r

Notice that v and v may fall outside the image borders. Usually, when
I(u,v) falls outside the image border, its value is taken as a specific color
(such as black), or as the closest pixel inside the image. We will not do this
here. Instead, we use the slightly altered definition:

I = 1 2
(maXT)(-T, y) max(O,m—r)§szl§ar)1§in(m—l,$+r) (U7 U) ()
max(0,y—r)<v<min(n—1,y+r)

All that is different is that u and v are limited so that they will always fall
within the image.

The pixel value at (x,y) in new image, thus, is the maximum value of a
square window (limited to fall inside the image) around the pixel at (z,y)
in the original image. Notice that, except when the window is limited when
it falls close enough to the border, the diameter of the window is 2r + 1; it
is always odd. In Section we will look at implementing maximum filters
for windows with even diameter.

Maximum and minimum filters are as defined above are special cases of
erosion and dilation filters.

The naive algorithm is very straightforward.

2 Exact Algorithms

for each pixel (x,y) in the image
max_pixel = image(x, y)
for each pixel (u, v) in the neighbourhood of (x, y)
if image(u, v) > max_pixel
max_pixel = image(u, v)
result(x, y) = max_pixel

The algorithm is conceptually clear, but in actual code there are many
places to make mistakes, some subtle enough to go unnoticed. Here is the
algorithm in more detail:

for (int x = 0; x < image.width(); ++x)
{
int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);

for (int y = 0; y < image.height(); ++y)
{
int yO = max(0, y - radius);
int y1 = min(image.height() - 1, y + radius);

max_pixel = image(x, y);

for (int u = x0; u <= x1; ++u) //note <=, not <
{
for (int v = y0; y <= y1; ++v)

{
if (image(u, v) > max_pixel)
{
max_pixel = image(u, v);
}
}
}
result(x, y) = max_pixel;

Off-by-one errors It is incredibly easy to make off-by-one errors. An easy
way to verify the size of the window is to use two test images containing
sequential data—one going up and the other going down. This is the image
with a sequence going up:

0 1 2 3 oo w—1
w w4+ 1 w+ 2 w+ 3 . 2w—1
(h—1w (h-—1w+1 (h—Dw+2 (h—1w+3 ... hw-1

(3)
On this test data, the maximum is trivially dependent on the window size.
For example, the algorithm must give the value 2w + 2 for the pixel (1, 1)
if the window is 3 x 3 for the upward image, and (wh — 1) — (2w + 2) for
the downward image. If we do not get these value, the most likely cause is
a miscalculation of the window corner coordinates.

2 Exact Algorithms

2.2 The Max-Queue

Using unsigned integers In the code above, int was used for all the
indices and sizes. I prefer to use unsigned int instead—mnot to increase
the range, but rather to provide extra information for the reader. When
using unsigned values, making certain mistakes is much easier (and for this
reason some recommend not using them in the first place). In particular,
the window coordinates must be calculated differently:

//do not subtract before we are sure it is safe
unsigned int x0 = x > radius 7 (x - radius) : 0;

//always safe (at least for images with positive dimensions)
unsigned int x1 = min(image.width() - 1, x + radius);

This code still assumes that the image is not an image with zero width or
height.

Initialising max-pixel Note that we initialise the max-pixel value with
the centre pixel. We could use any pixel in the window range, but using the
centre pixel avoid any extra (error prone) calculations.

Another approach is to assign it with an appropriate interpretation of —oo.
For example, if we know that all our pixels are non-negative, we might use
zero. There are several reasons why this is not a good idea:

e You might later find that it is useful to extend the data range of im-
ages. If you forget that you made the assumption about the minimum
value of image data, your implementation will be incorrect.

e The algorithm is less generic, that is, you need to do extra work to
use the algorithm on other types, especially custom types.

A Max-Queue is a queue that have the following additional properties:

e It has a fixed capacity. When an item is pushed into the queue so
that the capacity is exceeded, an item automatically popped from the
front.

e It maintains the maximum value of all values in the queue, that is, its
supports a max () operation that performs in O(1) time.

A max-queue can be used to implement the filter maximum algorithm. The
algorithm uses the separability of the problem. There is a whole section
about separability under the section Other Algorithm Concepts, but for now
it is enough to know that we can perform the filtering in two steps:

1. The first step applies a 1D filter to each row.

2. The second step applies the 1D filter to each column of the result of
the last step.

We can use the same algorithm for both steps. There are different ways to
accomplish this (and these are discussed under the Separation section). The
simplest way is to transpose the image before and after the second step:

2 Exact Algorithms

Image filter_max_2d(Image image, int radius)

{

}

//pass on rows
filter_max_queue_rows(image, radius);

//move rows to columns
image.transpose();

//pass on columns (now in rows)
filter_max_queue_rows(image, radius);

//move columns back to rows
image.transpose();

The basic operation of the filter_max_queue function is simple:

1. We start pushing pixels from the row into the queue.

2. At some stage, we have enough information in the queue to start
writing output into the results folder. This happens when we have
pushed radius + 1 pixels. We keep on pushing pixels as we write the
queue maximum to the result row.

3. At some stage, we have pushed all the pixels in the row. We still have
enough values in the queue to write output until the result row is full.
We pop out the remaining queue values as we write output. When the
result vector is full, there are radius values left in the queue.

As always with “simple” algorithms, the devil is in the details. Off-by-one
errors is extremely easy to make, and somewhat tricky to spot.

Here is the algorithm in proper loops:

unsigned int window_width = 2 * radius + 1;
MaxQueue<T> window(window_width) ;

for (unsigned int y = 0; y < image.height(), ++y)

{

unsigned int x_read = 0;//read from image
unsigned int x_write = 0;//write to result

// Step 1 - start pushing data into the queue
for (; x_read < radius; ++x_read)
{

window.push(image(x_read, y));

}

// Step 2 - keep on pushing data, start writing output
for (; x_read < image.width(); ++x_read, ++x_write)
{

window.push(image (x_read, y));

result(x_write, y) = window.max();

}

2 Exact Algorithms

// Step 3 - Keep on removing values from the queue
// and keep on writing output.
// We cannot push more data - we are out of pixels.
for (; x_write < image.width(); ++x_write)
{

window.pop();

result(x_write, y) = window.max();

}

// A check to make sure we have not accidentally popped
// one pixel too many or few.
assert(queue.size() == radius + 1);

// If we do not clear values, the values that remain
// in the queue will be used in the first few

// calculations of the next row.

window.clear();

return result;

Because of the simplistic way in which we use the queue, you might think
it is not necessary to use a queue. Indeed, it is not, and in the next section
we see how the same algorithm can be implemented without a queue.

However, the queue approach has distinct advantages that makes using this
algorithm useful in certain circumstances:

1. It makes it possible to change the algorithm to an in-place algorithm.
The implementation above needs extra memory the size of the image
(in addition to the negligible amount of memory needed by the queue
and index variables). Of course, this is only useful if the transpose
function is also in-place, or we use a access modifier (see the section
Image Access Modifiers in the Appendix).

2. It is conceptually easier to implement.

3. Conceptually, it foreshadows the more complicated monotonic wedge
algorithm discussed later. Understanding the algorithm makes imple-
menting that algorithm easier.

As we will show, the algorithm performs well with random data, but not
so well when the data is piece-wise pseudo-monotonic (i.e., if the pixels
in a row (roughly) grows from left to right over for sections of the image.
Unfortunately, for real-world images, the latter is often the case.

2.3 Implicit Queue Algorithm

This algorithm is conceptually identical to the one described in the previous
section, except that there is no explicit queue. We use indices to keep
track of the front and back of the queue, and a value to keep track of
the maximum. There is some code added to search for a new maximum
whenever the current maximum moves out of the window. This has been
hidden in the implementation of the max-queue. (This function looks so
long because of all the comments!)

2 Exact Algorithms

unsigned int window_width = 2 * radius + 1;
unsigned int width = image.width();

for_Y (image, y)
{
unsigned int x_read = 0;//read from image,
//end of implicit queue

unsigned int x_write = 0;//write to result
unsigned int x_start = 0;//start if implicit queue
unsigned int x_max = 0; //max in implicit queue

// Step 1
for (; x_read < radius; ++x_read)
{
if (image(x_read, y) > image(x_max, y))
{
X_max = x_read;
}
}
// Step 2
for (; x_read < width; ++x_read, ++x_write)
{
if (image(x_read, y) >= image(x_max, y))
{
x_max = x_read;
}

//x and y must be swapped
result(y, x_write) = image(x_max, y);

if (x_read + 1 >= window_width)
//only pop if there are enough items in the queue!
{
if (x_start == x_max)
{ // The max is moving out of the window next round
// so find the new max from the pixel after the
// front of the queue. It would be correct to
// analyse up to x_read + 1, but it is not necessary,
// because on the next pass, if the next value to be
// read (now x_read + 1) is bigger than the max, it
// will replace it.

x_max = find_argmax_in_row_in_range(
image,
X_start + 1,
X_read,

y);

++x_start;

2 Exact Algorithms

}
}

for (;x_write < image.width(); ++x_write)
{

//x and y must be swapped

result(y, x_write) = image(x_max, y);

if (x_start == x_max)

{ // The max is moving out of the window next round
// so find the new max from the pixel after the
// front of the queue. We do not look past the last
// pixel in the row!

x_max = find_argmax_in_row_in_range(
image,
x_start + 1,
image.width() - 1,
v);

++x_start;

}

return result;

Below is the implementation of the find_argmax function.

find_argmax_in_row_in_range(
image,
range_start,
range_stop, //includes last pixel to be analysed
row)

{
// Initialise max to the first pixel in the range
X_max = range_start;

// Check whether any of the remaining values
// in range are bigger
for (unsigned int x = range_start + 1; x <= range_stop; ++x)
{

if (image(x, y) >= image(x_max, y))

{

X_max = Xx;

X

3

return x_max;

¥

A few notes about this implementation:

2 Exact Algorithms

10

e In the filter_max_implicit_queue function, Step 2, note the line:
if (image(x_read, y) >= image(x_max, y)). Here we use >= in-
stead of > as a small step towards a faster filter. By using the right-
most value as the maximum, we reduce the chances of the max-
imum being moved out of the window, causing us to perform the
slow linear search for the new maximum. The same goes for the line
if (image(x, y) >= image(x_max, y)) in the function
find_argmax_in_row_in_range.

e The indices x_start, x_read, and x_write can be calculated from a
single index. However, it is quite tricky to get this right, and makes
the program harder to read.

As we will show later, the implicit queue algorithm is considerably faster
than the explicit queue algorithm. It is somewhat more complicated, but
still manageable.

2.4 The Monotonic Wedge Algorithm

The max-queue algorithm is slow when it has to perform many searches. It
is possible to have images that performs a search for every pixel popped, in
which case the algorithm does no better than the separated naive algorithm.
To combat this worse-case scenario, we maintain a more sophisticated pre-
sentation of the window: a monotonic wedge that ensures we can find new
maximums quickly when they move out of the window. The monotonic
wedge is discussed in more detail in the appendix. For now, the following
facts will suffice for understanding the algorithm:

Let U; be a monotonic wedge of the sequence A;. Then U; has the following
properties:

e [Jj is the index of the maximum element of A;,
o U is the largest element of all elements to the right of Ay, .

e In general, Uy is the largest element of all elements to the right of
Ay,

As with the queue-based algorithm, we push and pop elements, while main-
taining the maximum element (as the first element in the monotonic wedge).
When we pop out the maximum, we need to find the new maximum—but
instead of having to search for it through the window, we merely take the
next element from the wedge (since we also popped the maximum from the
wedge, the new maximum will be the new front of the wedge).

The algorithm maintains a wedge for a sliding window—thus the sequene
A; changes in each iteration. The trick is to maintain the wedge efficiently.
There are three cases:

e We process an element smaller than the wedge back. In this case, we
merely append the element’s index to the wedge back.

e We process an element that is larger than the back. In this case,
we need to pop out all elements from the back that are smaller than
this element, and then push this element onto the wedge. When the
element is larger than the wedge front, we will pop all elements before
pushing the new index.

2 Exact Algorithms

11

Here is an example. Let our source sequence be 1,3,5,4, 2,6, 3, and suppose
we use a window with width 3. Then the wedge looks like this as we process
each element:

i | A U
01 1
1113 3
211355
31254 |54
41542542
51426 |6
61263|63
7163 63

deque<unsigned int> wedge;

for (unsigned int y = 0; y < image.height(); ++y)
{
unsigned int x_read = 0;//read from image
unsigned int x_write = 0;//write to result

// Step 1 - start pushing data into the wedge
for (; x_read < radius; ++x_read)
{
while(
(lwedge.empty()) &&
(image (wedge.back(), y) <= image(x_read, y)))
{
wedge . pop_back() ;
}

wedge . push_back(x_read) ;
}

// Step 2 - keep on pushing data, start writing output
for (; x_read < image.width(); ++x_read, ++x_write)
{
while(
('wedge.empty()) &&
(image (wedge.back(), y) <= image(x_read, y)))
{
wedge . pop_back() ;
}

wedge . push_back(x_read) ;
result(x_write, y) = image(wedge.front(), y);

if (x_read + 1 >= window_width)
//only pop if there are enough items in the queue!
{
if (wedge.front() == x_read)
{
wedge.pop_front () ;

3 Approximate Algorithms 12

++x_start;
}
}

// Step 3 - Keep on removing values from the queue
// and keep on writing output.
// We cannot push more data - we are out of pixels.
for (; x_write < image.width(); ++x_write)
{

result(x_write, y) = image(wedge.front(), y);

if (wedge.front() == x_start)
{

wedge.pop_front () ;
}

++x_start;

}

// If we do not clear values, the values that remain
// in the queue will be used in the first few

// calculations of the next row.

wedge.clear();

return result;

The following table shows how internal variables change in the example

above:

1 | x_read | x_write | A U

Stepl1 |0 |0 - 1 1

Step2 |11 0 13 3
212 1 1355
313 2 254 1|54
414 3 5421542
5195 4 426 1|6
6|6 5 2631|163

Step3 | 7| - 6 63 63

3 Approximate Algorithms

In some cases, an approximate maximum filter might be acceptable, or even
desirable. Approximate filters can be implemented very efficiently, and in
some-cases, they provide smoothness that are better suited for whatever the
filter is used for. The maximum function satisfies these two properties:

e max(z,y) > x and max(z,y) > vy,

e max(x,x) = x.

3 Approximate Algorithms 13

3.1

3.2

Ideally, we would like our approximation to also satisfy these two proper-
ties. Unfortunately, for continuous approximations, this is not possible. It
should be clear that the properties can be trivially satisfied when we allow
discontinuities, for example:

T =y

Tty xTHy @

max(z,y) ~ {

There are several approximations that satisfy one of these properties. Here
we will consider three that are viable for efficient implementation

max(z;) ~ (1 3 :rp> v (Power Mean) (5)

N
1/p
max(z;) ~ (Z a:f) (Power Mean Variant) (6)
Z x;ﬂrl
max(z;) ~ == (Contra-harmonic Mean) (7)

>y
The implementations of all three these algorithms are very similar.

The Power Mean Approximation

power_sum_table = make_power_sum_table(image, p)
for_XY (image, x, y)

{
x0 = x - radius;
x1 = x + radius;
yO = x - radius;
yl = x + radius;

power_sum = get_sum(power_sum_table, x0, yO, x1, y1);
window_size = (x1 - x0)*(yl - y0);

result(x, y) = pow(power_sum/window_size, 1.0/p);

The Power Mean Variant Algorithm

power_sum_table = make_power_sum_table(image, p)
for_XY (image, x, y)

{
x0 = x - radius;
x1 = x + radius;
yO = x - radius;
yl = x + radius;

power_sum = get_sum(power_sum_table, x0, yO, x1, y1);

result(x, y) = pow(power_sum, 1.0/p);

4 Other Algorithm Concepts

14

3.3 The Contra-Harmonic Mean Approximation

denominator_power_sum_table = make_power_sum_table(image, p)
numerator_power_sum_table = make_power_sum_table(image, p + 1)

for_XY (image, x, y)

{
x0 = x - radius;
x1 = x + radius;
yO = x - radius;
yl = x + radius;
numerator = get_sum(power_sum_table, x0, yO, x1, y1);
denominator = get_sum(power_sum_table, x0, yO, x1, yl1);
result(x, y) =
(denominator > 0) ? nominator / denominator : O;
result = pow(power_sum, 1.0/p);
}

Of course, we might also calculate the numerator from the denominator with
a point-wise product:

numerator_power_sum_table =
denominator_power_sum_table * image;

4 Other Algorithm Concepts

4.1 Separation

In Section [2.2 we used the fact that we can implement a 2D maximum filter
by applying a 1D maximum filter to all the rows, and then again to all
the columns of the result. In this section we look in more detail to this
procedure.

The separability comes from the following property of the maximum oper-
ator. If S and T are two sets of numbers, then

max(max(S), max(7T")) = max(SUT)

The same applies to the minimum operator:

min(min(S), min(7")) = min(S UT)

(There are operators that do not follow this law. The median operator
is an example. For instance, if S = {1,1,1} and T = {1,2,3}, then
med(med(S), med(T")) = med(1,2) = 1.5, but med(SUT) = 1.)

This property of the maximum operator allow us to rewrite the definition
as follows:

(maxy[)(z,y) = _max x| [(u,v)] (8)

4 Other Algorithm Concepts

15

From this it should be clear that we can first find the maximum of the rows,
and then the columns (or vice versa).

When separation was first introduced, we structured it as follows:

Here is a separated version of the naive algorithm:

filter_max_1d()
{

for (int x = 0; x < image.width(); ++x)
{
int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);

max_pixel = image(x, y);

for (int u = x0; u <= x1; ++u) //note <=, not <

{

if (image(u, v) > max_pixel)
{
max_pixel = image(u, v);
}
}

result(x, y) = max_pixel;

There are many benefits to use a separated algorithm.

First, it is simpler to implement. In the 1D implementation, there are fewer
loops and indices to keep track of, so there is less chance for error.

Second, it is much faster. If we can perform the operation maxS of k
elements in O(f(k)) time, then the first original form of the definition will
execute in O(mnf(d?)), but the second one only in O(mn - 2f(d)) where d
is the window diameter. If f(k) = k, for example, as it is in the case of the
naive algorithm, then the original algorithm is O(mnd?), but the separated
one is only O(2mnd). Even for a small diameter d = 3, the unseparated
version is 1.5 times as slow as the separated one.

Third, for some algorithms less temporary memory is needed. For example,
the approximation algorithm discussed here can be structured so that only
one row of extra memory is necessary for the SAT, instead of an entire image
of extra memory.

Fourth, 1D algorithms are more readily available. Any 1D max filtering
algorithm can automatically be turned into a 2D separated max filtering
algorithm. It is not even always clear how to define a 2D algorithm without
using separation. The Max Queue algorithm is an example of this.

4 Other Algorithm Concepts

16

Using transposition This method has been introduced in Section
recall the implementation:

Image filter_max_2d(Image image, int radius)
{

//pass on rows

filter_max_1d_rows(image, radius);

//move rows to columns
image.transpose();

//pass on columns (now in rows)
filter_max_1d_rows(image, radius);

//move columns back to rows
image.transpose();

}

The transpose function simply replaces rows with columns. Here is a simple
implementation:

void Image: :transpose()

{
Image result(height, width); //swap dimensions

for_XY (*this, x, y)
{

result(y, x) = (*this)(x, y);
}

//Swap this image width and height
mWidth = result.width();
mHeight = result.width();

//Copy result to this image

for_XY ((xthis), x, y)
{
(*this) (x, y) = result(x, y);
}
}

In-place transposition The simple implementation above requires extra
memory the same size as the image we are transposing. This will defeat any
attempt to save memory with an in-place implementation of the max-filter.
An in-place transposition function will solve this problem.

The solution below assumes we have all the image data in a 1D array, and
access it through calculations. For example, image(x, y) is equivalent to
image.mData[x + y * mWidth].

For each pixel:

1. We calculate the position k0 in the array of the pixel

4 Other Algorithm Concepts

17

2.
3.

and the position k1 in the array of the pixel that it has to swap with.

If k0 < k1, we swap the two array values. The check is necessary, oth-
erwise we will perform two identical swaps, leaving the array exactly
as it was. Note that we need not swap the values when k0 == ki,
since then it is exactly the same pixel!

Finally we swap the width and height values of the image.

Here is the algorithm in code:

void Image::transpose() //in-place

{

for_XY (xthis, x, y)

{

}

k0
k1

x + mWidth * y;
y + mHeight * x;

if (kO < k1)//make sure we only swap once

{
//swap
tmp = mDatal[kO];
mData[kO] = mDatal[k1];
mDatalkl] = tmp;

}

//Swap this image width and height
unsigned int tmp = mWidth;

mWidth = mHeight;

mHeight = tmp;

Implicit transposition We can also implement a separated function
without any transposition of image data. A tricky scheme to accomplish
this is to perform the transposition implicitly when we write into the result
image of the 1D function that operates on rows:

Here is how it looks in the implementation of the separated naive algorithm:

for_

{

Y (image, y)

for_X (image, x)

{

int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);

max_pixel = image(x, y);

for (int u = x0; u <= x1; ++u) //note <=, not <
{

if (image(u, v) > max_pixel)

{

max_pixel = image(u, v);

4 Other Algorithm Concepts

18

}
}

// Write in reverse index order
// for implicit transposition
result(y, x) = max_pixel;
}
}

The critical line is where we write the result—we simply swap the images.

When calling this function, we ensure that the result image its dimensions
swapped from the image we wish to process:

filter_max_naive_separated(image)
{
Image result(image.height(), image.width());

filter_max_naive_rows_in_cols(image, result);
filter_max_naive_rows_in_cols(result, image);

3

Notice that we merely call the function with result and image swapped on
the second pass. On the second pass, the column data is in the rows of
result, and the algorithm will thus write the column data (rows in result)
in the columns of image.

Although this scheme has the appearance of elegance, the requirement to
swap the x and y indices in the 1D algorithm might easily be overlooked
leading to subtle bugs (especially if no index checking is performed). It may
also confuse other developers: they might see it as a mistake and swap them.

Also note that this scheme does not allow in-place implementations. (Not
without writing some very tricky code, at least).

Access modifiers An elegant way to solve the problem is to use an image
access modifier. An access modifier changes the way pixels are accessed—in
this case it will the meaning of x and y indices. There are different ways
of doing this, and it is discussed more thoroughly in its own section under
Image Containers in the Appendix [A] To demonstrate the method, we will
use a simple wrapper class that overloads the access function:

template<typename T>
class ImageSwapXY
{
ImageAcess(const & Image<T> image) :mImage (image);
T& operator(unsigned int x, unsigned int y)
{
return mImage(y, x);
}
I

We can now write our 2D algorithm as follows:

filter_max_naive_separated(image)

4 Other Algorithm Concepts

19

{
Image result(image.width(), image.height());

filter_max_naive_rows_in_cols(image, ImageSwapXY(result));
filter_max_naive_rows_in_cols(result, ImageSwapXY(image));

3

The implementation of the function filter_max_naive_rows_in_cols can
now write the result in rows, which is much more natural. Note that we
do not need the ImageSwapXY objects for anything else than to wrap the
result images—all the data is written on the original image.

4.2 Implementing Minimum Filters

Given an algorithm for a maximum filter, it is usually easy to convert it to
a minimum filter. In the case of exact filters, the appropriate comparissons
need to change (for example, “greater than” changes to “less than”). In the
case of the aproximate algorithms given, we simply replace p with —p.

Minimum filters for free For an arbitrary algorithm, the changes might
not be obvious. In this case, we can pre- and post-process the image to get
the desired result, using the following formula:

min [= —max(—1)

That is, we invert the image, run it through the maximum filter, and invert
the result. The only caveat is that we must ensure that the inverted image
fits into our data range. To do this, we use the following conversion instead:

min [= Iy — max(ly — I),

where Ij is the maximum value in our data range.

A generic implementation We might also want to implement both fil-
ters as a single algorithm where a parameter forces the desired behaviour.
How this can be done depends on what language features are available. Lan-
guages with function datatypes (including function pointers and delegates)

can use the appropriate comparator as argument. The naive algorithm can
look like this:

filter_extreme(
const Image<float> & image,
int radius,
bool (* comparator) (float,float),
Image<float> & result)

{
for (int x = 0; x < image.width(); ++x)
{
int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);

for (int y = 0; y < image.height(); ++y)
{

4 Other Algorithm Concepts

20

int yO = max(0, y - radius);
int y1 = min(image.height() - 1, y + radius);

extreme_pixel = image(x, y);

for (int u = x0; u <= x1; ++u) //note <=, not <
{
for (int v = y0; y <= yl; ++v)
{
if (comparator(image(u, v),extreme_pixel))
{
extreme_pixel = image(u, v);
}
}
}

result(x, y) = extreme_pixel;

bool greater-than(float x, float y)

{
return x > y;
}
bool less-than(float x, float y)
{
return x < y;
}
/7. ..

// To max filter an image:
filter_extreme(image, result, radius, greater_than);

// To min filter an image:
filter_extreme(image, result, radius, less_than);

4.3 Windows with Even Diameters

All the algorithm descriptions are given in terms of the radius, which implies
that all the window diameters are odd. It is possible to define the algorithms
for even windows too, but the implementation becomes somewhat trickier.
In this section, I describe the general way in which you can proceed to turn

a odd-window algorithm into one that supports all window sizes.

There are all kinds of interesting (and often rather tricky) ways in which

you can adapt an algorithm to support even-sized windows. But there is
one which is fairly useful across the board: extend the defintion to work

with different radii as follows:

4 Other Algorithm Concepts

21

(max,I)(x,y) = max I(u,v) (9)
T=Tg0 SUSTHT41
Y—ryoSv<y+ry1

Instead of a single radius, there are now four radii: one for each direction
around a pixel. This definition not only makes it possible to max filters with
even diameters, it also allows us to shift the pixel around, so that it is not
in the center of the window.

Below is an adaption of the max-queue algorithm:

(Image<T> & image,
unsigfned int left_radius,
unsigned int right_radius,
Image<T> & resultimage)

unsigned int window_width = left_radius + right_radius + 1;
MaxQueue<T> window(window_width);

for (unsigned int y = 0; y < image.height(), ++y)
{
unsigned int x_read = 0;//read from image
unsigned int x_write = 0;//write to result

// Step 1 - start pushing data into the queue
for (; x_read < left_radius; ++x_read)
{

window.push(image (x_read, y));

3

// Step 2 - keep on pushing data, start writing output
for (; x_read < image.width(); ++x_read, ++x_write)
{

window.push(image (x_read, y));

result(x_write, y) = window.max();

}

// Step 3 - Keep on removing values from the queue
// and keep on writing output.
// We cannot push more data - we are out of pixels.
for (; x_write < image.width(); ++x_write)
{

window.popQ) ;

result(x_write, y) = window.max();

3

// A check to make sure we have not accidentally popped
// one pixel too many or few.
assert(queue.size() == right_radius + 1);

// If we do not clear values, the values that remain
// in the queue will be used in the first few
// calculations of the next row.

4 Other Algorithm Concepts

22

window.clear();

}

return result;

filter_max_2d()
{
filter_max_1d_rows(image, result, left_radius,
right_radius);
result.transpose() ;

filter_max_1d_rows(result, image, top_radius,
bottom_radius) ;
result.transpose();

}

Notice how relative painless the conversion is. This is also true for the other
algorithms—try it!

The corner calculations in the naive algorithm becomes:

int x0 = max(0, x - left_radius);
int x1 = min(image.width() - 1, x + right_radius);

int yO = max(0, y - top_radius);
int y1 = min(image.height() - 1, y + bottom_radius);

For square windows centered around the working pixel, the left and right
radii can be calculated from the diameter with this formula:

left_radius = diameter / 2; // assumes floor division
right_radius = diamater - 1 - left_radius;

4.4 Filtering a Region of Interest

In some cases filtering the entire image is wasteful for the purpose at hand.
To limit any of the algorithms to a rectangular region is trivial; however,
there is an important issue to consider—that is how the borders should be
treated.

Before we get to that, let us ignore for the moment the borders and see how
we can implement algorithms for ROIs.

There are two basic strategies.

The first is to pass a container rectangle to the algorithm, and limit its
operation within that rectangle. In the case of the naive algorithm, the only
change is to the loop ranges:

Here, we pass in a Rect structure roi that is defined like this:

struct Rect

{
int x0; //inclusive
int x1; //exclusive

4 Other Algorithm Concepts 23

int y0; //inclusive
int y1; //exclusive

}

// We might want to check that the
// roi rectangle is indeed in the image
// before we proceed

for (int x = roi.x0; x < roi.xl1l; ++x)
{
int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);

for (int y = roi.y0; y < roi.yl; ++y)
{
int yO = max(0, y - radius);
int y1 = min(image.height() - 1, y + radius);

max_pixel = image(x, y);

for (int u = x0; u <= x1; ++u) //note <=, not <
{
for (int v = y0; y <= yi; ++v)
{
if (image(u, v) > max_pixel)
{
max_pixel = image(u, v);
}
}
}
result(x, y) = max_pixel;
¥
}

Notice that the clamping ranges have been left in tact. This means that the
algorithm will use pixels outside the image for its calculation, but only as
is necessary.

It should be easy to see that the other algorithms are as easily modified.

The second strategy is to wrap the image in an access modifier, and pass it
to the (unmodified) algorithm. The access modifier simply maps coordinates
from the region of interest to indices starting at zero.

Here is a naive implementation of this idea:

class ROIWrapper : AbstractImage
{

int mXO;

int mYO;

int mWidth;

int mHeight;

4 Other Algorithm Concepts 24

AbstractImage & mImage;

RoiWrapper (AbstractImage & image, const Rect & roi):
mX0(roi.x0),
mYO(roi.y0),
mWidth(roi.x1 - roi.x0),
mHeight (roi.yl - roi.y0)
mImage (image) //copy reference to image

{3

const T & operator() (int x, int y) const
{
return image(x - mRoi.x0, y - mRoi.yO0);

}

T & operator() (int x, int y)
{
return image(x - mRoi.x0, y - mRoi.y0)&;

}

int width()
{

return mWidth;

}

int height()
{
return mHeight;
3
by

To filter part of our image, we simply wrap the image with the ROIWrapper,
and pass it to the normal algorithm (which, now, of course, must take an
AbstractImage). Note that we wrap our result in exactly the same way.

I said the implementation above of the wrapper is naive, because using it
in an algorithm will make it ignore all pixels outside the border, even when
they are available. Unfortunately, it is not easy to circumvent this problem.

One way to handle it is to extend the ROI, but limit changes to within the
ROL

//somewhere
T * IGNORED_ADRESS = new T();

class ROIWrapper : AbstractImage
{

int mReadXO;

int mReadYO;

int mReadWidth;

4 Other Algorithm Concepts

25

int mReadHeight;
Rect mWriteRect;
AbstractImage & mImage;

RoiWrapper (
AbstractImage & image,
const Rect & roi,
unsigned int radius

mReadX0(max (0, roi.x0 - radius)),

mReadY0 (max (0, roi.y0 - radius)),
mReadWidth(min(image.width(), roi.x1) - mReadX0),
mReadHeight (min(image.height (), roi.y1l) - mReadYO),
mWriteRect (roi),

mImage (image) //copy reference to image

{3

const T & operator()(int x, int y) const

{

return image(x + mReadX0, y + mReadYO) ;

}

T & operator() (int x, int y)
{
int writeX x + mReadXO;
int writeY = y + mReadYO;

if (mWriteRect.contains(writeX, writeY))
{

return image(, y - mRoi.y0)&;
}

else

{
return IGNORED_ADDRESS;

}
}

int width()

{
return mReadWidth;

}

int height ()
{
return mReadHeight;
}
}

ROIWrapper (image, roi, radius);
RoiWrapper(result, roi, radius);

4 Other Algorithm Concepts

26

filter_max(image, result, radius);

The IGNORED_ADRESS is simply an address where we can write values we
wish to ignore to.

The downside of this implementation is that the algorithm will do more
work than needed. On the upside, it makes it possible to use any image
algorithm in a ROI without the need to modify the algorithm.

4.5 Maximum and Minimum Filters for Binary Images

For binary images, the implementation can be significantly optimised.

First note that for binary values, max(a,b) = aORb and min(a,b) =
a ANDD.

This allows us to define the maxfilter as follows:
(max,I)(x,y) = ORy—r<u<ztr I(u,v) (10)
y—r<v<y+r

From this, we can modify our naive algorithm to bail out as soon as a 1 is
found.

max_filter ()

for (int x = 0; x < image.width(); ++x)

{
int x0 = max(0, x - radius);
int x1 = min(image.width() - 1, x + radius);
for (int y = 0; y < image.height(); ++y)
{
int yO = max(0, y - radius);
int y1 = min(image.height() - 1, y + radius);
max_pixel = 0;
for (int u = x0; (u <= x1) & (max_pixel == 0); ++u)
{
for (int v = yO; (y <= y1) & (max_pixel == 0); ++v)
{
if (image(u, v) == 1)
{
max_pixel = 1;
}
}
}
result(x, y) = max_pixel;
}
¥

The max-queue algorithm needs no adaption; we only adapt the max-queue.
This is done in Section [C] but you will already get the gist with the adaption

4 Other Algorithm Concepts

27

we make for the implicit queue algorithm. The main difference is that we
need not search for maximum. We will never pop the maximum if it is 0,
and if we pop the maximum when it is 1, it must be the only one in the
window—which means the new maximum is the right-most 0.

unsigned int window_width = 2 * radius + 1;
unsigned int width = image.widthQ);

for_Y (image, y)
{
unsigned int x_read = 0;//read from image,
//end of implicit queue

unsigned int x_write = 0;//write to result
unsigned int x_start = 0;//start if implicit queue
unsigned int x_max = 0; //max in implicit queue

// Step 1
for (; x_read < radius; ++x_read)
{
if (image(x_read, y) >= image(x_max, y))
{
x_max = x_read;
}
}
// Step 2
for (; x_read < width; ++x_read, ++x_write)
{
if (image(x_read, y) >= image(x_max, y))
{
X_max = x_read;
}

result(x_write, y) = image(x_max, y);

if (x_read + 1 >= window_width)
//only pop if there are enough items in the queue!
{
if (x_start == x_max)
// There are no 1s in the window, so
// set the index to the right-most O
X_max = x_read;

}

++x_start;
}
}

for (;x_write < image.width(); ++x_write)
{

result(x_write, y) = image(x_max, y);

A Image Containers

28

A TImage Containers

A.1 TImage Class Interface

if (x_start == x_max)

{
// There are no 1s in the window, so
// set the index to the right-most O
x_max = image.width() - 1;

3

++x_start;
¥
}

return result;

Note, this algorithm does not have the same worse-case performance as
the one for arbitrary values. The worse-case performance of the binary
algorithm is the same as the average case. In fact, a monotonic wedge is
automatically maintained here—so this algorithm is essentially equivalent
to the monotonic wedge algorithm for binary values.

The way in which an algorithm is implemented depends heavily on the
implementation of the data structure used to represent an image. Consider,
for example, all the small differences in a Matlab implementation of the
naive algorithm compared to the C++-like one given earlier:

[height, width] = size(image);

for x=1:width
x0 = max(1, x - radius);
x1 = min(width, x + radius)

for y=1:height
yO = max(1l, y - radius);
yl = min(height, y + radius);

window = image(yO:y1, x0:x1);

result(y, x) = max(window(:));
end
end

The goal of this section is not to look at all the different ways images can
be represented, and how these affect the implementation of the algorithms.
Rather, this section will look at the presentation assumed in the algorithm
descriptions given above, and give some general enhancements that you
should be able to implement on top of whatever presentation you are using.

class Image<T> //T is the image pixel data type - int or float
{

A Image Containers 29

public:
unsigned int width(); //returns the width of the image
unsigned int height(); //returns the height of the image

//Gets value of pixel at (x, y)
const T & operator(unsigned int x, unsigned int y) const;

//Gets a writeable reference to the pixel at (x, y)
T & operator(unsigned int x, unsigned int y);

3

If you define your own class, you might also find it useful to provide accessors
to the last x- and y-indices.

A.2 Image Loops
The CImage library defines several loops that are extremely convenient.

The following loop iterates over all pixels in the image:

for_XY(image, x, y)
{

do_something_with(image(x, y));
}

It is equivalent to the more verbose and error-prone

for(int x = 0; x < image.width(); i++)

{
for(int j = 0; j < image.height(); j++)
{
do_something_with(image(x, y));
}
}

The definitions of the macros are simple. Here they are:

#define for_1(i, end) for(unsigned i = 0; i < (end); i++)
#define for_X(image, x) for_1(x, (image).width())
#define for_Y(image, y) for_1(y, (image).height())

#define for_XY(image, x, y) \
for_X((image), x) for_Y((image), y)

These are easy to extend to images of more than 2 dimensions (including
multi-channel images).

These types of macros can also be used to implement loops over windows of
images. Here is an example:

#define for_2(i, begin, end) \

for(unsigned i = begin; i < end; i++)

#define for_win_X(image, x, u, radius) \
for_2(u, \

A Image Containers 30

x - radius >= 0 ? x - radius : O, \

min(image.width() - 1, x + radius))
#define for_win_Y(image, y, v, radius) \
for_2(v, \
y - radius >= 0 7 y - radius : O, \

min(image.width() - 1, y + radius))

#define for_win_XY(image, x, y, u, v, radius) \
for_win_X(image, x, u, radius) \
for_win_Y(image, y, v, radius)

Using these we can write the naive algorithm as follows:

for_XY(image, x, y)
{

max_pixel = image(x, y);

for_win_XY(image, x, y, u, v, radius)
{
if (image(u, v) > max_pixel)
{
max_pixel = image(u, v);

3

result(x, y) = max_pixel;
}
}

A.3 Image Iterators

The looping mechanisms shown above can of course also be implemented
with iterators.

These are simple to implement in the idioms of any language, except for
C++.

For example, in Java

class XYImagelterator implements Iterator
{

int x;

int y;

Image image;

XYImageIterator(Image image)
{
this.image = image;
x = 0;
y = 0;
}

boolean hasNext ()
{

A Image Containers

return (y < image.height());
}

float next()
{

float value = image(x, y);

X++;

’

if (x >= image.width())

class XYWindowIterator()
{

int x;

int y;

int u;

int v;

Image image;

int radius;

int uBegin;
int uEnd;

int vEnd;
// vBegin is not necessary

XYWindowIterator(Image image, int radius)

{
x = 0;
y=0;

calculateWindowLimits ()

this.image = image;
this.radius = radius;

}

bool hasNextWindow()
{
}

bool hasNextPixel()
{

return v < vEnd;

}

A Image Containers

32

3

float nextWindow()

{

}

float pixel;
X++;

’

if (x >= image.width())

calculateWindowLimits () ;

return pixel;

void calculateWindowLimits()

{

}

uBegin = max(0, x - radius);
uEnd = min(image.getWidth() - 1, x + radius);

float vBegin = max(0, y - radius);
vEnd = min(image.getHeight() - 1, y + radius);

u = uBegin;
vBegin;

<
]

float nextPixel()

{

}

float pixel = image(u, v);

ut++;
if (u > uEnd) // Not >=
{

u = uBegin;

vt++;

}

return pixel;

The window iterator allows us to implement the naive algorithm as follows:

for (XYWindowIterator i; i.hasNextWindow();)

{

float maxPixel = i.nextWindow();

for(; i.hasNextPixel();)

A Image Containers 33

{
float pixel = i.nextPixel();

if (pixel > maxPixel)
{
maxPixel = pixel;
X
}
X

This type of iterator is unfortunately only useful in a limited set of circum-
stances (we cannot, for example, conveniently add two images and put the
result in a third). More useful are iterators that return indeces, instead of
values:

class XYIndex

{
public int x;//no use protecting these
public int y;

b

class XYIndexIterator implements Iterator
{

int x;

int y;

Image image;

XYImageIterator (Image image)
{

this.image = image;

x = 0;

y = 0;
}

boolean hasNext ()

{
return (y < image.height());
}

XYIndex next()

{
float index = new XYIndex(x, y);
X++;

)

if(x >= image.width())

A Image Containers 34

Although we could write image.getPixel(index.x, index.y), it is a lot
neater to implement the Image class to take XYIndex objects as parameters
for pixel accessors, so that we can write image.getPixel (index).

A.4 TImage Access Modifiers

An access modifier is a scheme that modifies the way pixel data is accessed—
usually to hide ugly an error prone calculations. In the separation section
(Section , we have seen how access modifiers can be used to swap x and
y coordinates, allows elegant implementations of 2D functions in terms of
1D functions. There, we have implemented the access modifier as a wrapper
class.

Access modifiers are useful for the following reasons:

e they make algorithms more reusable,

e they make it easier to write test code based on invariants.
Access modifiers can be implemented in several ways:

e wrapper classes;

e function pointers, delegates or other function data types (including
functors); and

e iterators.

Implementation with Wrapper Classes

class ImageRow

{
ImageRow(Image &, unsigned int row = 0):
mRow (row)
{3
set_row(unsigned int row){mRow = row;}
inc_row() {mRow++;3}
operator[] (unsigned int x)
{
return mImage(x, row);
}
}

Notice that we overloaded operator [] instead of operator (). The former is
much more common in the world of 1D algorithms.

This allows us to use any 1D function on our images:

for_Y (image, y)
{

some_1d_algorithm(ImageRow(image, y), ...);
}

or if we do not like to create a new instance for each row, we could call

A Image Containers

35

ImageRow image_row(image)

for_Y (image, y)

{
image_row.set_row(y);
some_1d_algorithm(image_row, ...);

3

A third, and perhaps much cleaner implementation:

class ImageRow
{
ImageRow(Image & image):
mImage (image) ,
mRow (0) ;
set_row(unsigned int row);

private:
const Image & mImage;
unsigned int mRow;

}

class ImageRows
{
ImageRows (Image &):
mImageRow(image)

{};

ImageRow & operator[] (unsigned int y)
{
mImageRow.set_row(y);
return mImageRow;
}
}

some_2d_function(image, ...)
{

ImageRows image_rows (image)

for_Y (image, y)
{
some_1d_algorithm(image_rows[y], ...);
}
}

Implementation function pointers Another way to implement access
modifiers is to build the functionality directly into the image container.
We modify access by calling a access modifier function, which changes the

A Image Containers

36

current accessor being used. Here is a simple implementation.

class Image

{

P

3

typedef T (* AccessFunction) (Image<T> image, T x, T y);

void set_acces_swap_xy()

{
access_function =
};
void set_access_straight()
{
access_function = access_swap_xy();
}

AccessFunction access_function;

access_straight (image, x, y)

return image(x, y);

access_swap_xy(image, x, y)

return image(x, y);

It is also possible to implement access modifiers into the algorithms, instead
of into the classes, as has been done in this implementation of the naive
algorithm:

filter_max(

{

Image image,

Image result,

unsigned int radius,

T (* accessor)(image, unsigned int, unsigned int))

for_Y(image, y)
{
for_X(image, x)
{
x0
x1

max_pixel = accessor(image, x, y);

for_X(image, u)
{

T pixel = accessor(image, x, y);

A Image Containers

37

}

Implementation with iterators
straightforward.

if (pixel > max_pixel)

{
max_pixel = pixel;
}
}
acessor(result, x, y) = max_pixel;
}
}

returned.

Here is a Java implementation of an iterator that swaps x and y:

class SwapXYImagelterator implements Iterator

{

int x;
int y;
Image image;

XYImageIterator(Image image)
{

this.image = image;
x = 0;
y =0;

}

boolean hasNext ()

{
return (y < image.height());
}

float next()

{
float value = image(y, x); //simply swap them
X++;

’

if (x >= image.width())

Implementation through iterators is
Iteration itself does not change—only the pixel that is

B Fixed-width Deques 38

B Fixed-width Deques

A fixed-width deque is a deque with a fixed capacity: whenever an item is
pushed into the deque so that the capacity is exceeded, an item is popped
from the other side of the deque automatically.

Standard-deque-based implementation It is easy to build a FWD
from a standard by overloading the push operations:

template<class T>
class FixedWidthDeque : deque

{
public:
FixedWidthDeque (unsigned int capacity);
void push_back(T item);
void push_front(T item);
private:
mCapacity;
3

template<class T>

FixedWidthDeque<T>: :FixedWidthDeque (capacity):
mCapacity(capacity)

{
//nothing to do here

}

template<class T>
void FixedWidthDeque<T>: :push_back(T item)
{

deque: :push_back(item) ;

if (size() > mCapacity)
{
pop_front();
}
}

template<class T>
void FixedWidthDeque<T>::push_front(T item)
{

deque: :push_front (item);

if (size() > mCapacity)
{
pop_back();
}
}

Array-based implementation We can significantly improve the perfor-
mance of the container by building it on top of a simple array instead. The
following implementation maintains front and back indices.

B Fixed-width Deques

39

template<typename T>

class FixedWidthQueue

{

public:
FixedWidthQueue (unsigned int w);
“FixedWidthQueue() ;

void clear();

void push_back(const T& item);
void push_front(const T& item);
T pop_£front();
T pop_back();

const T& back() const;
const T& front() const;

unsigned int size() const;
private:

T * mData;

unsigned int mFrontIndex;

unsigned int mBackIndex;

unsigned int mSize;

const unsigned int mCapacity;

// No implementation for these

// are provided - they are made

// private to prevent their use.

T& operator=(const T& other);

FixedWidthQueue (const FixedWidthQueue<T> & other);
s

template<typename T>
FixedWidthQueue<T>: :FixedWidthQueue (unsigned int width):
mSize(0),
mFrontIndex(0),
mBackIndex (0),
mCapacity (width)

mData = new T[width];

template<typename T>
FixedWidthQueue<T>: : “FixedWidthQueue ()
{

delete [] mData;
}

template<typename T>
unsigned int FixedWidthQueue<T>::size() const
{

return mSize;

B Fixed-width Deques

40

template<typename T>
void FixedWidthQueue<T>::push_back(const T& item)
{

if (mSize == 0)

{
mDatal[0] = item;
mSize++;

¥

else

{
mBackIndex++;

if (mBackIndex >= mCapacity)
{

mBackIndex = 0;
}

mData[mBackIndex] = item;

if (mSize < mCapacity)
{
mSize++;
}
else
{

mFrontIndex++;

if (mFrontIndex >= mCapacity)
{
mFrontIndex = 0;
}
}
}
}

template<typename T>
void FixedWidthQueue<T>::push_front(const T& item)
{

if (mSize == 0)

{
mData[0] = item;
mSize++;
}
else
{
if (mFrontIndex > 0)
{
mFrontIndex--;
}

else

B Fixed-width Deques

41

{

mFrontIndex = mCapacity - 1;

}
mData[mFrontIndex] = item;

if (mSize < mCapacity)
{
mSize++

}
else
{
if (mBackIndex > 0)
{
mBackIndex--;

}

else
{
mBackIndex = mCapacity - 1;
}
b
¥
X

template<typename T>
void FixedWidthQueue<T>::clear()
{

mFrontIndex = 0;

mBackIndex = 0;

mSize = 0;

}

template<typename T>
T FixedWidthQueue<T>: :pop_front ()
{

assert (mSize > 0);
T return_val = front();

if (mSize == 1)
{

clear();

}

else

{

mFrontIndex++;

if (mFrontIndex >= mCapacity)
{

mFrontIndex = 0;

}

B Fixed-width Deques

42

mSize-—;

}

return return_val;

}

template<typename T>
T FixedWidthQueue<T>: :pop_back()
{

assert(mSize > 0);
T return_val = back();

if (mSize == 1)
{

clear();

}

else

{
if (mBackIndex > 0)

{

mBackIndex—-;

3

else

{
mBackIndex = mCapacity - 1;

3

mSize--—;

return return_val;

3

template<typename T>
const T& FixedWidthQueue<T>::back() const
{

assert(mSize > 0);

return mData[mBackIndex];

}

template<typename T>
const T& FixedWidthQueue<T>::front() const
{

assert(mSize > 0);

return mData[mFrontIndex];

3

C Max-queues

43

C Max-queues

A max-queue is a queue that also maintains the maximum element in the
queue.

The maximum is maintained by making the following adjustments to the
standard queue operations:

e When the first element is pushed into the queue, it becomes the max-
element.

e Whenever a new element is pushed into the queue that is larger than
the current max-element, it replaces the max-element.

e Whenever we push an element from the queue, we check whether it is
the max-element. If it is, we do a linear search through all elements
in the queue for the largest one—this now becomes the max-element.

To make it possible to know when we pop the maximum element from the
queue, we also maintain its position in the queue.

Here is the implementation of a fixed-width max-queue, built on top of a
deque which allows random access:

class MaxQueue<T>

{
unsigned int max_index;
unsigned int max_value;

deque<T> data;

public void push(T item)

{
if (empty)
{
max_value = item;
max_index = 0;
}
else if(item >= max_value) \\>= is better than >
{
max_value = item;
max_index = data.size();
}

data.push_back(item);

//This makes the max-queue fixed-width.
if(size() > max_size)
{
popQ);
}
}

public T popQ)
{

C Max-queues

44

if (empty())
{

//ERROR!
}
else

{
T item = data.pop_front();

if (max_index == 0)// We are popping the max element
{
if(size() > 0)
{
max_value = front();// datal[O]
max_index = 0;

for(i = 1; i < size(); i++)
{
if(datal[i] >= max_value)
{
max_value = datali];
max_index = i;
}
}

}
}
else //The max element moves forward
{

max_index--;

}

return item;
}
}

public void max()
{
return max_value;

}

public void size()
{
return data.size();
}
}

If the deque does no allow random access, but only sequential access through
an iterator, we replace the search code with this:

if (size() > 0)

{
Iterator itr = deque.iterator();
max_value = itr*;
max_index = 0;

C Max-queues

45

for(i = 1; i < size(); i++)
{

itr++;

if (itr* >= max_value)
{
max_value = itr*;
max_index = i;
}
}
}

Or in the Java idiom:

if(size() > 0)
{

Iterator itr = deque.iterator();

max_value = itr.next();
max_index 0;

for(i = 1; i < size(); i++)
{

T item = itr.next();

if (item >= max_value)
{
max_value = item;
max_index
}
}

i;

3

The algorithm is can be optimised for binary values. In this case, there is
no need to search for a maximum value if it is popped. The maximum value
will only be popped if it the leftmost value is a 1, and the only 1 in the
window, which means we can just set the new maximum value to the front

of the queue.

class MaxQueue<T>

{
unsigned int max_index;
unsigned int max_value;

deque<T> data;

public void push(T item)
{

if (empty)

{

max_value = item;

C Max-queues

46

max_index = 0;

}

}

else if(item >= max_value) \\>= is essential
{

max_value = item;

max_index = data.size();

}

data.push_back(item);

//This makes the max-queue fixed-width.
if(size() > max_size)

{

popQ);

}

public T popQ)

{

}

if (empty ()
{
//ERROR!
}
else
{
T item = data.pop_front();
if (max_index == 0)// We are popping the max element
{
if(size() > 0)
{
max_value = data.back();
assert(max_value == 0);
max_index = size() - 1;
}
}
else //The max element moves forward
{
max_index——;
}
return item;
}

public void max()

{

}

p
{

return max_value;

ublic void size()

D Summed Area Tables

47

return data.size();
}
}

D Summed Area Tables

D.1

Calculating a SAT

A Summed Area Table (also called image integral) of an image I is another
image of the same size S such that:

S(x,y) =Y I(z,y) (11)

u=0v=0

A related structure—and one which we will find more useful—is the aug-
mented SAT, where an extra row and column of zeros makes implementation
much cleaner. The augmented SAT is given by

0 z=0o0ry=0
S*(x,y) = { z—1 —y—1 .

D w0 2on_o I(x,y) otherwise
The SAT makes it possible to calculate the sum of all pixels in a region
in constant time—that is, it does not depend on the rectangle side. It is
therefore useful for implementing fast box-filters, local standard deviation
filters, and so on. It is also makes it possible the implement these filters on
graphics cards, which makes them suitable for real-time implementation (in
games, for example).

Although the expressions above can be used to calculate the SAT directly,
it is quite slow. The following recursion can be used to speed things up:

S(z,y) =1(z,y) + S(x,y— 1)+ S(x—1,y) — Sz —1,y—1) (12)

A similar recursion holds for the augmented SAT:

S (z,y)=Iz—-1y—1)+S(z,y—1)+Sx-1,y) - Sx-1,y—1) (13)
SAT

image_sum(0, 0) = image(0, 0);

for (unsigned int i = 1; i < image_sum.width(); i++)
{
image_sum(i, 0) = image_sum(i - 1, 0) - image(i, 0);

3

//we already assigned image_sum(0, 0); loop starts at 1
for (unsigned int j = 1; j < image_sum.height(); j++)
{

image_sum(0, j) = image_sum(0, j - 1) - image(0, j);

D Summed Area Tables 48

}
for (unsigned int i = 1; i < image_sum.width(); i++)
{
for (unsigned int j = 1; j < image_sum.height(); j++)
{
image_sum(i, j) =
(image_sum(i, j - 1) - image_sum(i - 1, j - 1))
+ image_sum(i - 1, j) + image(i, j);
}
}
Notice the order of the calculations in the main loop: we are making sure
that:

e The subtraction is always positive (which is necessary if the imple-
mentation uses the unsigned data type).

e We subtract early to reduce the risk of overflow. If we subtract only
after adding the other values, we risk overflow in the intermediate
calculations even though the final result itself might still be in range.

ASAT The implementation for the ASAT is very similar, the only differ-
ences are that:

e the first row and column are assigned to zero; and

e the image is accessed one index less than the SAT being calculated.

for (unsigned int i = 0; i < image_sum.width(); i++)
{
image_sum(i, 0) = 0;

}

//we already assigned image_sum(0, 0); loop starts at 1
for (unsigned int j = 1; j < image_sum.height(); j++)

{
image_sum(0, j) = O;
}
for (unsigned int i = 1; i < image_sum.width(); i++)
{
for (unsigned int j = 1; j < image_sum.height(); j++)
{
image_sum(i, j) =
(image_sum(i, j - 1) - image_sum(i - 1, j - 1))
+ image_sum(i - 1, j) + image(i - 1, j - 1);
}
}

If you are concerned about all the subtractions in the main loop, it is easy
to use additions instead:

for (unsigned int i = 0; i < image.width(); i++)

{

D Summed Area Tables 49

for (unsigned int j = 0; j < image.height(); j++)

{
image_sum(i + 1, j + 1) =
(image_sum(i + 1, j) - image_sum(i, j))
+ image_sum(i, j + 1) + image(i, j);
}
3

D.2 Finding a Sum from a SAT

The sum of a rectangular region in an image (from (zo, yo) to (and including)
(z1,91)) is given by

1 Y1
Z Z I(I,y) = S(:Chyl)_s(zlayo_l)_S(IO_lay0_1)+S(x0_lay0_1)

T=To Y=Yo

(14)
provided that g > 0 and yo > 0. Any term S(z,y) for which z = —1
or y = —1 falls away in the calculation above. It is this that makes this
structure so inconvenient:

if (x0 > 0)
{
if (yo > 0)
{
return
((image_sum(x1l, y1) - image_sum(xl, yO - 1))
+ image_sum(x0 - 1, yO - 1)
- image_sum(x0 - 1, y1);
}
else //y0 ==
{
return
image_sum(xl, y1) - image_sum(x0, y1);
}
}
else //x0 ==
{
if (yO > 0)
{
return
((image_sum(x1l, y1) - image_sum(xl, yO - 1));
}
else //y0 ==
{
return image_sum(xl, y1);
}
}

In terms of the ASAT, the sum of a rectangular region of an image is given
by:

S Ie,y) = S(er Ly +1) -8+, yo) — (o, yo)+ S0, o) (15)

T=To Y=Yo

D Summed Area Tables 50

for any (zo,y0) and (x1,y1) that are legal image indices.
The computation is much cleaner (and indeed, faster):

return
((image_sum(xl + 1, y1 + 1) - image_sum(xl + 1, y0))
+ image_sum(x0, yO)
- image_sum(x0, yl + 1);

D.3 Checking for Overflow

We probably do not want to check each and every calculation for overflow—
it will slow down out computations considerably. But during development,
it is useful to have a few asserts to make sure we are not thrown off track
by corrupt results caused by overflow (especially when dealing with large
SATS discussed in the next section).

Thus, here we give a few tests to ensure results of calculations stay in range.

Safe addition and subtraction The following test obviously is useless:

zZ=x+7y;
assert(z <= MAX_VALUE); //useless

If z overflows, it will still be smaller than MAX_VALUE; the test will always
pass.

The following test looks better, but it is only valid if y >= 0:

assert(x <= MAX_VALUE - y); //useful for positive y
zZ=3x+7y;

To better document the intention of the test, we put the code in a function.
This has the additional benefit of allowing us to write specialised code for
different data types by overloading functions. This reduces the mental over-
head when inserting these tests in code. The following code gives correct
tests for non-negative and arbitrary integers respectively:

bool safe_to_add(unsigned int x, unsigned int y)
{

return x <= MAX_UINT - y;
}

bool safe_to_add(int x, int y)
{
if ((x > 0) & (y > 0))
return x <= MAX_INT - y;
if ((x < 0) & (y < 0))
return x >= MIN_INT - y;

// if x == 0 or y == 0, it is safe

// if x and y has opposite signs, it is always safe
// since then min(x, y) < x + y < max(x, y)

return true;

D Summed Area Tables

51

Here are the tests for subtraction.

bool safe_to_subtract(unsigned int x, unsigned int y) //x -y
{

return (x >= y);

X
bool safe_to_subtract(int x, int y) //x -y
{
if ((x > 0) & (y < 0))
return x <= MAX_INT + y;
if ((x < 0) & (y > 0))
return x >= MIN_INT + y;
if ((x > 0) & (y > 0) && (x < y))
return x >= MIN_INT + y;
if ((x <0) && (y < 0) & (x < y))
return MAX_INT + x >= (MAXINT + y) + MIN_INT;
// if x == 0 or y == 0, it is safe
// else if (x > y)) return true;
return true;
X

Notice the complicated return expression for the last case (when all signs are
negative and x < y): it has been carefully crafted to not overflow itself—
the quantity MIN_INT + y will overflow if y is negative; top prevent this, we
add MAX_INT to both sides. This assumes the compiler will not do anything
clever. (If it does, then it should be clever enough to enable overflow checks
for debugging, in which case you will not need any of this code).

Also note that the test are only safe if MIN_VAL and MAX_VAL really are
the data type extremes, otherwise the test computations themselves can
overflow. Thus, do not use these tests for more general bound checking!

Safe multiplication and division The test for multiplication needs a
check for zero to prevent a division by zero error.

The following test is valid for unsigned integer and floating point types:

bool safe_to_multiply(unsigned int x, unsigned int y)
//will also work for any unsigned type

{
if (y == 0)
return true;

return (x <= MAX_VALUE / y);
}

If we have to deal with negative numbers as well, we have to ensure the

D Summed Area Tables

52

result lies within both ends of the data range. Integer division with negative
numbers is a murky area (I do not know, for instance, whether -10/3 will
give -3 or -4), so to avoid potential problems, we only perform positive
division. The more complicated safe-multiplication test now becomes:

safe_to_multiply(int x, int y)
//will also work for other signed types
//assumes -MIN_VALUE <= MAX_VALUE

if ((y==0) |l (x==0))
return true;

if ((x > 0) & (y > 0))
return (x <= MAX_VALUE / y);

if ((x < 0) && (y < 0))
return (-x <= MAX_VALUE / -y);

if ((x > 0) & (y < 0))
return (-MIN_VALUE / x) >= -y)

/*¥(x < 0) && (y < 0)*/
return (-MIN_VALUE / y) >= -x);
}

The assumption ~-MIN_VAL won’t overflow is itself a bit murky, so be sure to
check it for your language and compiler.

Except for division by zero cases, integer division can never lead to overflow.
For unsigned floating point types, the following test will work:

bool safe_to_divide(unsigned float x, unsigned float y)
{

//no check for division by zero in this function

return
((x==0) || (y > 1)) ? true : x < MAX_VALUE * y);
}

Notice that we do not check for division by zero in this function. There are
two reasons for this:

1. Using two separate asserts will be more informative—it will immedi-
ately tell us why it is unsafe.

2. It will enable us to switch off overflow checking without also switching
off division-by-zero checking.

In general, we will only want to activate overflow tests in program parts that
deals with that issue specifically (such as large SATs discussed below), and
only while developing them. Division-by-zero is a more general problem,
with a different solution.

For arbitrary floating point types, the following test will work:

D Summed Area Tables

53

D.4 Large SATs

Safe exponentiation

safe_to_pow(float x, int n)
{

return x < pow(MAX_VALUE, 1.0/n));
}

Large SATs are bound to overflow. If they are only used for fast sums of
image regions, then we can implement a structure that behaves like a proper
SAT, but won’t overflow, at the expensive of some extra memory. We will
call this a Tile SAT (TSAT).

The idea behind the TSAT is that any SAT calculated over only a region of
the image will give correct sums for all queries in that region.

That is, if

Ty = 3 3 Iwv) (16)

u=ug v=1vg
then for ug < ¢ < x1 < wuy and vy < yo < y1 < v1, the following holds:

Z1 Y1
Z Z I(z,y) =T(z1,y1)—T(x1,90—1)—T(zo—1,91)+T(x0—1,y0—1)
T=To Y=Y1
(17)
The TSAT is a collection of such tiles T' that overlap enough so that we can
make a query for any rectangle smaller than a x § square. As with the
SAT, we can augment tiles to make code cleaner and a bit faster. The non-
augmented version will not be discussed here. (Beware though that while
the ASAT requires O(w + h) extra memory, the augmented TSAT requires
O(wh) extra memory, although it should still be a small fraction of the total
memory).

How big should the tiles be? Suppose the maximum value that our
data type allows is Z. Then each tile should not have entries that exceed
Z. If the maximum value of a pixel is z, then the maximum entry in the
table is given by d?z, where d is the diameter of the (square) tile. Thus, an

upper bound for d is given by:
Z
d<y/— 18
<2 (18)

How much must tiles overlap? First, note that we cannot make queries
for regions larger than or equal to d x d, regardless of the overlap. Thus
6 < d. In the extreme case when we want 6 = d — 1, we need a tile for
almost every pixel in the image, using a considerable amount of memory.
So ideally, we want ¢ < d.

It should be easy to see that our tiles need to be computed for regions
that overlap by d pixels. If they do not, there are queries that cannot be
calculated from a single tile.

D Summed Area Tables

54

How many tiles will be required? Our tiles are d x d, and they should
overlap by 0 pixels. Thus, for an image w x h, will need M x N tiles given

(= R (E= I I

Using contiguous memory We can still put all our tiles in one big block
of memory. Since the tiles in the last columns and rows will typically only
be partially used, we need not allocate memory for all of M N(d+ 1)2. The
actual amount of memory we need is given by:

dy =w— (d—8)(M —1) (20)
dy=h—(d—8)(N—1) (21)
(22)

wr=(M-1)(d-1)+M+d, (23)
hr=(N—-1)(d—1)+ N +d, (24)
(25)

Constructing the table

double cellArea = (double) max_cell_value / max_pixel_value;
mCellDiameter = (unsigned int) floor(sqrt(cellArea));
mNonOverlapDiameter = mCellDiameter - mMaxDifference;

assert (mWidth > 2);//otherwise the following
//calculation will bomb out
assert(mHeight > 2);

unsigned int cellCountX
= (mWidth - 2) / mNonOverlapDiameter + 1;

unsigned int cellCountY
= (mHeight - 2) / mNonOverlapDiameter + 1;

unsigned int offsetX = mWidth
- mNonOverlapDiameter * (cellCountX - 1);

unsigned int offsetY = mHeight
- mNonOverlapDiameter * (cellCountY - 1);

mDataWidth = (cellCountX - 1) * (mCellDiameter - 1)
+ cellCountX + offsetX;

mDataHeight = (cellCountY - 1) * (mCellDiameter - 1)
+ cellCountY + offsetY;

mTableData = new T[mDataWidth*mDataHeight];

D Summed Area Tables

55

unsigned int readX = mMaxDifference - 1;
unsigned int readY = mMaxDifference - 1;

for (unsigned int x = 0; x < mDataWidth; x++)
{

readY = mMaxDifference - 1;

if (x % mCellDiameter == 0)
{ //zero column for augmentation

//backtrack so that tiles overlap
//used next round
readX -= mMaxDifference - 1;

for (unsigned int y = 0; y < mDataHeight; y++)
{
access(x, y) = 0;
}
}
else
{
for (unsigned int y
{
if (y % mCellDiameter == 0)
{//zero row for augmentation

0; y < mDataHeight; y++)

access(x, y) = 0;

//backtrack so that tiles overlap
//used next round
readY -= mMaxDifference - 1;
}
else
{
//calculate region sum
access(x, y) =
access(x - 1, y)
+ access(x, y - 1)
- access(x - 1, y - 1)
+ image(readX, readY);

// did we really calculate everything correctly?
assert(access(x, y) <= max_cell_value);

readY++;

readX++;

	The Problem
	Exact Algorithms
	The Naive Algorithm
	The Max-Queue
	Implicit Queue Algorithm
	The Monotonic Wedge Algorithm

	Approximate Algorithms
	The Power Mean Approximation
	The Power Mean Variant Algorithm
	The Contra-Harmonic Mean Approximation

	Other Algorithm Concepts
	Separation
	Implementing Minimum Filters
	Windows with Even Diameters
	Filtering a Region of Interest
	Maximum and Minimum Filters for Binary Images

	Image Containers
	Image Class Interface
	Image Loops
	Image Iterators
	Image Access Modifiers

	Fixed-width Deques
	Max-queues
	Summed Area Tables
	Calculating a SAT
	Finding a Sum from a SAT
	Checking for Overflow
	Large SATs

